• Physicochemical and Electronic Properties of Cationic [6]Helicenes: from Chemical and Electrochemical Stabilities to Far-Red (Polarized) Luminescence
    J. Bosson, G.M. Labrador, S. Pascal, F.-A. Miannay, O. Yushchenko, H. Li, L. Bouffier, N. Sojic, R.C. Tovar, G. Muller, D. Jacquemin, A.D. Laurent, B. Le Guennic, E. Vauthey and J. Lacour
    Chemistry - A European Journal, 22 (51) (2016), p18394-18403
    DOI:10.1002/chem.201603591 | unige:90268 | Abstract | Article HTML | Article PDF | Supporting Info
 
The physicochemical properties of cationic dioxa (1), azaoxa (2), and diaza (3) [6]helicenes demonstrate a much higher chemical stability of the diaza adduct 3 (pKR+=20.4, Ered1/2 =−0.72 V) compared to its azaoxa 2 (pKR+=15.2, Ered1/2=−0.45 V) and dioxa 1 (pKR+=8.8, Ered1/2=−0.12 V) analogues. The fluorescence of these cationic chromophores is established, and ranges from the orange to the far-red regions. From 1 to 3, a bathochromic shift of the lowest energy transitions (up to 614 nm in acetonitrile) and an enhancement of the fluorescence quantum yields and lifetimes (up to 31 % and 9.8 ns, respectively, at 658 nm) are observed. The triplet quantum yields and circularly polarized luminescence are also reported. Finally, fine tuning of the optical properties of the diaza [6]helicene core is achieved through selective and orthogonal post-functionalization reactions (12 examples, compounds 415). The electronic absorption is modulated from the orange to the far-red spectral range (560–731 nm), and fluorescence is observed from 591 to 755 nm with enhanced quantum efficiency up to 70 % (619 nm). The influence of the peripheral auxochrome substituents is rationalized by first-principles calculations.
  • Steroid Receptor RNA Activator (SRA) Modification by the Human Pseudouridine Synthase 1 (hPus1p): RNA Binding, Activity, and Atomic ModelOpen access paper
    T. Huet, F.-A. Miannay, J.R. Patton, S. Thore and P.C. Driscoll
    PLoS ONE, 9 (4) (2014)
    DOI:10.1371/journal.pone.0094610 | unige:36716 | Abstract | Article HTML | Article PDF
The most abundant of the modified nucleosides, and once considered as the “fifth” nucleotide in RNA, is pseudouridine, which results from the action of pseudouridine synthases. Recently, the mammalian pseudouridine synthase 1 (hPus1p) has been reported to modulate class I and class II nuclear receptor responses through its ability to modify the Steroid receptor RNA Activator (SRA). These findings highlight a new level of regulation in nuclear receptor (NR)-mediated transcriptional responses. We have characterised the RNA association and activity of the human Pus1p enzyme with its unusual SRA substrate. We validate that the minimal RNA fragment within SRA, named H7, is necessary for both the association and modification by hPus1p. Furthermore, we have determined the crystal structure of the catalytic domain of hPus1p at 2.0 Å resolution, alone and in a complex with several molecules present during crystallisation. This model shows an extended C-terminal helix specifically found in the eukaryotic protein, which may prevent the enzyme from forming a homodimer, both in the crystal lattice and in solution. Our biochemical and structural data help to understand the hPus1p active site architecture, and detail its particular requirements with regard to one of its nuclear substrates, the non-coding RNA SRA.
  • Direct coupling of carbenium ions with indoles and anilines for the synthesis of cationic π-conjugated dyes
    R. Vanel, F.-A. Miannay, E. Vauthey and J. Lacour
    ChemComm, 50 (81) (2014), p12169-12172
    DOI:10.1039/C4CC05193A | unige:40250 | Abstract | Article HTML | Article PDF
A C-C bond forming reaction occurs spontaneously between tris-(2,6-dimethoxyphenyl)carbenium ion and indoles / anilines. The carbocation acts both as electrophile and oxidant. Effective cationic π-conjugated dyes are formed resulting in a strong hyper- and bathochromism

Google

 


Redisplay in format 

                 

    in encoding 

  
Format for journal references
Format for book references
Last update Tuesday March 26 2024